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Abstract— Computer simulations are becoming increasingly 
common to assess the performance of new wireless 
techniques. However, careful selection of the models used is 
key to conduct a proper and accurate study. This paper 
presents a new two dimensional shadowing model and 
illustrates system level performance sensitivity to modeling. 
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I. INTRODUCTION 
As complexity of mobile communication systems increases, 

the use of computer simulations to assess the performance of 
new techniques is becoming increasingly common. Although 
this evaluation methodology represents a good compromise 
between cost, time efficiency, accuracy and complexity, a 
careful selection of the models used is required to provide an 
appropriate and accurate evaluation of a new technique or 
algorithm. 

In this context, the MORANS (Mobile Radio Network 
Reference Scenarios) initiative [1] started as part of the 
European COST action. The MORANS initiative intends to 
provide a homogeneous framework where network 
performance analysis carried out by different researchers can be 
directly compared. For this purpose, a reference model 
consisting of different layers has been defined. Each layer 
refers to a different aspect of network characteristics, one of 
them being propagation. In fact, radio interface modeling has 
always been an important research topic in the mobile 
communications community, with much of the efforts focused 
on developing path loss models for various operational 
environments. Although fast fading has been traditionally 
considered at the link level, different papers have presented 
methods to include the effect at the system level [2], [3]. Such 
inclusion has proven decisive, since [4] demonstrated that the 
actual link-to-system level interface considered in the 
evaluation of adaptive radio resource management techniques 
does not only have an important effect on the estimated 
performance of the technique but also on decisions regarding 
the optimal configuration. 

Shadowing is traditionally modeled as a random variable that 
is added to the effects of the path loss. Although shadowing 
does not depend on distance between transmitter and receiver, 
it depends on the position of the units participating in the 
communications link. Such dependency has been previously 
considered using correlation functions [5]. However, the 
available models are limited, in the sense that they produce 
shadowing values independently for different mobile units, 
even if such units are in close vicinity. To overcome such 
limitation, [6] proposes a two dimensional shadowing model 

that allows correlated generation of shadowing values for 
mobile units that are in a given area. 

In order to justify the inclusion of complex propagation 
models in system level studies, it is important to demonstrate 
that their use will make a significant effect on the outcome of 
results obtained within such studies. In this context, the aim of 
this paper is to assess the impact, at the system level, of the 
proposed two dimensional shadowing model. 

II. TWO-DIMENSIONAL SHADOWING MODEL 

A. General Approach 
The effect of shadowing is commonly modelled by adding a 

log-normally distributed, that is, normally distributed in decibel 
domain, random variable to propagation path loss [7]: 
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where L  is mean path loss and G(0,σ) is a gaussian random 
variable with zero mean and standard deviation equal to σ.  

 
Figure 1: Shadowing autocorrelation function 

Typical standard deviation values are given in [5] for 
different environments. The simple addition of a gaussian 
variable does not completely model shadowing. An additional 
aspect should be considered: shadowing is a slowly variant 
characteristic of radio channel. This slowness in variations 
indicates the existence of a non-zero autocorrelation of 
shadowing in time domain. As mobility is assumed, time 
correlation is intimately related to space correlation. In fact, 
physical explanation of shadowing is primarily associated to 
position [8]. Spatial correlation of shadowing is mathematically 
modelled by [5]: 
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where ∆r is the space shift (change in position) and dcorr is the 
decorrelation distance, for which typical values are given in [5]. 
A plot of autocorrelation (2) is included in Figure 1. 



Let’s assume that propagation from a certain point to a set of 
B different base stations must be modelled, as is usually the 
case in system-level simulations. Since shadowing is due to the 
influence of local topographic features and man-made 
structures, it is reasonable to think that there must be certain 
correlation between the shadowing corresponding to different 
base stations at the same location. Therefore, the previous 
model needs to be extended. A proposal for such extension can 
be found in [5].  

A set {G1, G2… GB} of shadowing values is to be generated 
for each location, each value being a normally distributed 
random variable with zero mean and standard deviation equal 
to σ. The problem at hand is how to generate such random 
variables, given that each pair of them (Gi, Gj), must have a 
correlation coefficient ρij = ρ, that is, correlation between all 
pairs of variables is constant. A typical value for ρ is ρ=0.5 [9]. 

A solution for that problem is to generate B+1 independent 
gaussian random variables {g0,  g1, g2… gB} and, afterwards, to 
calculate each Gi (i>0) as follows: 
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 (3) 

B. Two Dimensional Model for Distance Correlation 
Let’s consider the case in which a series of propagation maps 

that account for shadowing needs to be generated. This task 
involves producing a shadowing sample for each location in 
every map. Since maps are two-dimensional, it is not possible 
to establish an order among its locations. Equation (2) provides 
a one-dimensional form for shadowing autocorrelation that 
implies one-dimensional filtering. An extension to the two-
dimensional case is hence needed.  

Figure 2: Autocorrelation of shadowing as a function of 
distance shift (movement in two dimensions). 

The first step towards the extension of the model is changing 
the form of the autocorrelation function. In a two-dimensional 
map a pair of Cartesian coordinates (x, y) unambiguously 
identifies a unique location. Movement from one point (x1,y1) to 
another (x2,y2) can, therefore, be described as a pair of 
increments, each corresponding to one coordinate: (∆x, ∆ y) = 
(x2 – x1, y2 – y1). Hence, distance between both points is 

22 yxr ∆+∆=∆ . Now, it becomes evident that equation (2) 

can be transformed in its two-dimensional counter-part: 
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where ∆x and ∆y are the shift in map horizontal and vertical 
coordinates (therefore, they are measured in distance units). 
Graphical representation of correlation now becomes a three-
dimensional plot as depicted in Figure 2. 

Next the filter design problem to achieve the autocorrelation 
properties needs to be considered. This can be realised using 
the following well-known identity that takes profit of Fourier 
transform and linear filter properties: 
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that is, when a signal is obtained by filtering a white (flat 
spectrum) input, the modulus of the Fourier transform of the 
autocorrelation function of that signal equals the square of the 
filter frequency response modulus. Since the purpose here is to 
obtain the filter rather than the autocorrelation, which in fact is 
given, equation (5) can be read from right to left: 

( ) ( )[ ]yxRFffH yx ,, =  (6) 

From equation (6), considering a phase for H(ƒx, ƒy) equal to 
that of F[R(x,y)], the inverse Fourier transform can be applied 
so as to obtain the filter impulse response h(x,y). Last, it also 
must be considered that the filter should not alter the variance 
of shadowing. Hence, normalisation of filter coefficients is 
necessary.  
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Figure 3: (a) Unfiltered and (b) filtered 2D shadowing maps. 

C. Two Dimensional Shadowing Map Generation Procedure 
Let’s assume that a set of n shadowing maps corresponding 

to n=ixj base stations located in the area of interest must be 
generated. According to previous Sections, the procedure 
should be as follows: 
1. Generate n+1 matrices covering the entire space 

considered, not a particular cell area - raster format for 
maps is assumed. Every element of the 2D map is a 
gaussian random variable with zero mean and standard 
deviation equal to σ (assumed shadowing standard 
deviation). Generated matrices are {g0,  g1, g2… gn}. 



2. Given a correlation coefficient of shadowing from 
different base stations equal to ρ, produce n shadowing 
maps, according to next equation: Gi = ρ1/2 g0 + (1-ρ)1/2 gi, 
i=1, 2… n. 

3. Use a numerical algorithm to compute two-dimensional 
Fourier and inverse Fourier transforms in order to obtain 
h(x,y), as explained in the previous Section. 

4. Utilise two-dimensional convolution to filter each 
shadowing map Gi, hence obtaining filtered maps 

iG~ . 

The effect of the filtering can be observed in Figure 3.  

D. Two Dimensional Shadowing Map Utilisation Procedure 
The n available shadowing maps – one per BS, contain 

information about the shadowing between the BS i and the rest 
of the area under consideration. It is worth noting that the 2D 
shadowing maps are generated at particular resolutions, e.j. 5, 
20 m. For intermmediate positions not computed due to 
resolution effects, a bi-lineal interpolation has been employed 
to obtain the shadowing information at those particular 
locations.  

 
Figure 4: Probability density function of simulated shadowing. 

In a TDMA system like the one studied herein, the procedure 
to calculate the downlink Carrier to Interference Ratio (CIR) 
employing the generated maps is as follows. The shadowing of 
the C component is extracted, at the corresponding position of 
the mobile (MS), from the map associated with the particular 
base station (BS) serving this MS. In order to compute the 
shadowing contributions, from each interfering BS, to the I 
component the same MS position is used to extract the 
shadowing values from each of the maps associated with the 
BSs of the co-channel interfering cells. Thus, the desired 
correlation between the shadowing values from different BS is 
obtained and the 2D spatial correlation achieved easily.  

E. Two Dimensional Shadowing Map Statistical Analysis 
The statistical analysis has been carried out in terms of 

probability density function (pdf) and the distance 
autocorrelation function matching. Figure 4 illustrates a good 
agremeent between the theoretical and the simulated pdf. In 
order to evaluate the autocorrelation function a set of rows from 
the map depicted in Figure 3 have been considered and the 
autocorrelation has been computed over each row and averaged 
as shown in Figure 5. The theoretical function in (2) has also 
been represented demostrating a close agreement between the 
simulated and the theoretical procedures. 

III. SIMULATION ENVIRONMENT 
The work presented in this paper is based on the General 

Packet Radio Services (GPRS) radio interface and considers the 
use of Link Adaptation (LA). The GPRS standard defines four 
different coding schemes (see Table 1 below) that offer a trade-
off between throughput and coding protection, paving the way 
for the application of dynamic LA to GPRS.  

Scheme Code rate Payload Data rate (kbits/s) 
CS1 1/2 181 9.05 
CS2 ≈2/3 268 13.4 
CS3 ≈3/4 312 15.6 
CS4 1 428 21.4 

Table 1. GPRS channel coding parameters 

In order to ensure high accuracy and to account for sudden 
channel quality variations, an event-driven simulator working 
at the burst level has been implemented. The simulator models 
a sectorised macrocellular network and concentrates on the 
downlink performance. Users are assigned channels in a first-
come-first-served basis and the channel is kept until all data has 
been correctly transmitted. A single slot allocation strategy has 
been implemented by means of a random allocation scheme. 
Although mobility has been implemented, handover between 
sectors has not been considered. The main simulation 
parameters employed are summarised in Table 2. A complete 
description of the simulation tool can be found in [10]. 

 
Figure 5: Distance autocorrelation: theoretical (black), averaged 
(blue) and ±standard deviation boundaries (dashed blue). 

Parameter Value 
Cluster size 4 
Cell radius 1km 
Sectorisation 120º 
Modelled interference 1st and 2nd co-channel tiers 
Nº of modelled cells 
(wrap-around) 

25 

Slots per sector 16 
Users per sector 16 
Traffic type H.263 video: 6 users/sector 

WWW: 6 users/sector 
Email: 4 users/sector 

Pathloss model Okumura-Hata 
Vehicular speed 50km/h 
ARQ protocol Only for WWW and email users. 

Assumed: perfect feedback of ARQ 
report and no RLC block losses 

ARQ window size 64 RLC blocks 
ARQ report period 16 RLC blocks 

Table 2. Simulation parameters 



The simulations conducted for this paper consider three 
different traffic sources: H.263 video, email and WWW 
browsing. No channel partition has been applied between the 
different services. The WWW and email traffic sources have 
been implemented as an ON/OFF model [10].. For both traffic 
models, the transmission of a new packet cannot start until the 
previous transmission has finished, i.e. all the data has been 
correctly received. As a result, the active transmission time will 
depend on the link quality conditions. The H.263 video traffic 
model considered employs three different frame types, namely 
I, P and PB, and targets a bit rate of 16 Kbit/s [11]. Each frame 
type exhibits different statistical properties, which are 
accurately captured by the model [11].   

In order to reduce the complexity of system level 
simulations, the effects at the physical layer are generally 
included by means of Look-Up Tables (LUTs). Given the 
importance of such interfaces [4], a set of advanced link-to-
system level interfaces working at the burst level have been 
considered; this modelling approach allows to model the effect 
of fast fading on the BER through a random process at the 
system level. The interested reader is referred to [10]. for 
further information. 

The basis of LA is to adaptively select the optimum CS 
according to the channel quality conditions and a predefined 
criteria. In terms of the criteria used to select the optimum CS, 
the LA algorithm implemented in this work considers a CS to 
be optimum if it maximises the throughput defined as in (8).  

Throughput = RCS-i × (1 – BLERCS-i) (8) 
where RCS-i and BLERCS-i are the data rate and BLER for a 

given CS respectively. This criteria is commonly employed and 
was also proposed in [12] for the study of the EDGE 
performance.  

IV. PERFORMANCE EVALUATION 
This Section presents the system performance evaluation 

carried out in order to assess the effect of the modelling 
technique proposed. In order to demonstrate whether the 
consideration of the 2D shadowing model is justified, the 
system performance obtained with this model will be compared 
to that obtained using a more traditional shadowing modelling 
approach based on a lognormal distribution, as explained in 
Section II.  

To this effect the simulation scenario described in the 
previous Section has been employed. The study of Link 
Adaptation has been selected as a suitable evaluation 
environment since this technique should be sensitive to the 
properties of modelling techniques related to the radio 
propagation channel. The results illustrated in this section 
correspond to a load of 16 users per sector and two LA 
updating periods (20 and 200ms), with an LA updating period 
defining how regularly a decision is made on the most suitable 
CS.  

Figure 6 and Figure 7 show the system throughput for the 
different LA updating periods and the two modelling 
techniques considered. The dashed line illustrates the 
performance achieved as the proposed 2D modelling technique 
is employed; whereas the solid line depicts the behaviour of the 
algorithm in case a log-normal distribution is employed to 
model the shadowing process. It becomes apparent that there is 
a significant performance difference as both modelling 
techniques are considered. For instance, for 95% of the users it 
is possible to achieve a throughput close to 12 kbps with the 2D 
modelling technique; whereas the log-normal distribution 
modelling provides a throughput closer to 10 kbps. This trend is 
also followed as larger LA updating periods are considered, 

although the difference between the estimations provided 
becomes smaller. 

 
Figure 6 – System throughput cdf for a LA updating period of 1 

RLC block (20 ms).  

 
Figure 7 – System throughput cdf for a LA updating period of 

10 RLC blocks (200 ms).  

This difference in behaviour is mainly due to two reasons. 
Firstly, as argued in Section II, the two dimensional model 
infers a spatial information by means of the shadowing maps 
that the log-normal modelling technique is not capable of 
capturing. The first consequence of this modelling lack is that  
mobiles traversing the same physical point could experience 
significantly different shadowing values. As exemplified by 
Figure 6 and Figure 7 this could lead to a difference in 
performance estimation. Furthermore, the use of the log normal 
modelling technique in a packet-switched scenario implies that 
mobiles contend for new resources at a burst level and 
consequently new radio channels are generated for them 
accordingly. However, this continuous contention implies that 
significantly different shadowing values could be generated 
after very short periods of time due to the lack of a spatial 
reference in the shadowing process. Finally, the other aspect 
that is not implemented through the log-normal modelling is the 
correlation between shadowing values from different BSs. This 
difference would result in the fact that, for example, while 
shadowing values related to different interfering signals will be 
considerably correlated in the case of the 2D modelling 



process, such correlation cannot be captured with the lognormal 
modelling approach. 

The system performance in terms of the Block Error Rate 
(BLER) is illustrated in Figure 8. The observations regarding 
this performance metric are similar to that obtained for the 
system throughput. Also, a difference of over 5% in BLER 
estimations could be identified for 95% of the samples. The 
differences in performance obtained when considering different 
shadowing modelling approaches are due to better transmission 
conditions and to a better functioning of the LA algorithm 
under the more correlated environment, i.e. considering the two 
dimensional shadowing model. Such operation is estimated by 
means of the performance metrics shown in Table 3. 

 
Figure 8 – System BLER cumulative density function for a LA 

updating period of 1 RLC block (20 ms).  

The average number of CS changes per second requested by 
the LA algorithm provide an indication of the signalling load 
associated with its use. As Table 3 shows the LA algorithm is 
adapting more correctly to the channel conditions when the 
correlated shadowing model is considered than in the case 
when the lognormal shadowing distribution is employed. The 
results of this better adaptation are reflected on the proportion 
of RLC blocks received with the optimal CS and on the 
proportion of wrong and right side failures. A right-side failure 
corresponds to the case where a user is using a non-optimal 
coding scheme but one robust enough for correct reception. For 
the wrong-side failure, the current coding scheme is not robust 
enough. The better throughput and BLER performance 
obtained when considering the proposed, and more realistic, 2D 
shadowing model are a direct result of this better functioning 
and adaptation process of the LA algorithm. The same effect is 
observed in Table 3 for the mean normalised delay. 

 

V. CONCLUSIONS 
This paper has presented a new 2D shadowing model, which 

provides a more realistic modelling environment by 

incorporating spatial information and shadowing correlation 
between BSs. The performance with the proposed model has 
been evaluated and a significant impact on the system 
performance estimation has been identified, proving the 
importance of considering such models in system level studies. 
Further investigations should be carried out to single out the 
modelling aspect, which contributes more significantly to the 
performance differences observed. 
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 2D Shadowing Model Log-Normal Based Shadowing Model 
 LA=1 LA=3 LA=10 LA=1 LA=3 LA=10 
Number of CS changes per second 10.62 4.34 0.96 13.17 4.90 1.12 
Mean normalised delay (ms/kbit) 64.75 64.23 62.99 69.71 68.63 65.92 
Blocks received with optimal CS (%) 79 72 67 73 66 62 
Wrong failures (%) 10.5 7.5 6 13.5 10 10 
Right failures (%) 10.5 20.5 27 13.5 24 28 

Table 3. LA algorithm performance 


